MORE GRAPHS WHOSE ENERGY EXCEEDS THE NUMBER OF VERTICES

CHANDRASHEKAR ADIGA, ZEYNAB KHOSHBAKHT and IVAN GUTMAN ${ }^{1}$
DEPARTMENT OF STUDIES IN MATHEMATICS, UNIVERSITY OF MYSORE, MANASAGANGOTRI, MYSORE-570006, INDIA
FACULTY OF SCIENCE, UNIVERSITY OF KRAGUJEVAC, P. O. BOX 60,34000 KRAGUJEVAC, SERBIA
EMAIL: ADIGA_C@YAHOO.COM
EMAIL: ZNBKHT@GMAIL.COM
EMAIL: GUTMAN@KG.AC.YU

Abstract

The energy $E(G)$ of a graph G is equal to the sum of the absolute values of the eigenvalues of G. Several classes of graphs are known that satisfy the condition $E(G)>n$, where n is the number of vertices. We now show that the same property holds for (i) biregular graphs of degree a, b, with q quadrangles, if $q \leq a b n / 4$ and $5 \leq a<b \leq$ $(a-1)^{2} / 2$; (ii) molecular graphs with m edges and k pendent vertices, if $6 n^{3}-(9 m+2 k) n^{2}+4 m^{3} \geq 0$; (iii) triregular graphs of degree $1, a, b$ that are quadrangle-free, whose average vertex degree exceeds a, that have not more than $12 n / 13$ pendent vertices, if $5 \leq a<b \leq(a-1)^{2} / 2$.

Keywords: Energy of graph, Spectral graph theory, Biregular graphs, Triregular graphs.

2000 Mathematics subject classification: Primary 05C50, Secondary 05C90.

[^0]
1. INTRODUCTION

In this paper we are concerned with a graph invariant defined in terms of graph eigenvalues. Let G be a simple graph and let its vertex set be $V(G)=$ $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. The adjacency matrix $A(G)$ of the graph G is a square matrix of order n whose (i, j)-entry is equal to unity if the vertices v_{i} and v_{j} are adjacent, and is equal to zero otherwise. The eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ of $A(G)$ are said to be the eigenvalues of the graph G, and are studied within the Spectral Graph Theory [1]. The energy of the graph G is defined as

$$
E=E(G)=\sum_{i=1}^{n}\left|\lambda_{i}\right|
$$

The graph energy is an invariant much studied in the mathematical and mathema-tico-chemical literature; for details see the book [8], the reviews [4, 5], and elsewhere $[2,6,7,9,10,11,12,13,14]$. For the chemical application of E see [5] and the references cited therein.

Recently some classes of graphs satisfying the inequality

$$
\begin{equation*}
E(G)>n \tag{1}
\end{equation*}
$$

have been characterized [6, 10]. Among graphs these are

- non-singular graphs, i. e., those for which $\operatorname{det} A(G) \neq 0[3] ;$
- regular graphs of degree greater than zero [10];
- hexagonal systems (benzenoid graphs) [6];
- acyclic molecular graphs, with exactly six exceptions $[7,9,11]$.

In this paper we point out a few other classes of graphs with the same property. In order to do this we first need some preparations.

2. DEFINITIONS AND PREVIOUS RESULTS

Let, as before, $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ be the eigenvalues of the graph G. The p-th spectral moment of G is defined as

$$
M_{p}=\sum_{i=1}^{n}\left(\lambda_{i}\right)^{p}
$$

Recall that

$$
\begin{equation*}
M_{2}=2 m \quad \text { and } \quad M_{4}=2 \sum_{i=1}^{n} d_{i}^{2}-2 m+8 q \tag{2}
\end{equation*}
$$

where m and q are, respectively, the number of edges and quadrangles in G.

The following lower bound for the energy is known [12]:

$$
\begin{equation*}
E(G) \geq \sqrt{\frac{M_{2}^{3}}{M_{4}}} \tag{3}
\end{equation*}
$$

For generalizations of (3) see $[2,13,14]$
Recall that a graph is said to be regular of degree x if all its vertices have the same degree x.

A graph G is said to be biregular of degrees x and $y, \quad(x<y)$, if at least one vertex of G has degree x and at least one vertex has degree y, and if no vertex of G has degree different from x or y. The set of all n-vertex biregular graphs of degrees x and y will be denoted by $\Gamma_{n}(x, y)$.

For $G \in \Gamma_{n}(a, b)$, the following special case of the inequality (3) has been recently deduced [6]:

$$
\begin{equation*}
E(G) \geq 2 m \sqrt{\frac{2 m}{(2 a+2 b-1) 2 m-2 a b n+8 q}} \tag{4}
\end{equation*}
$$

A graph G is said to be triregular of degrees x, y, and $z,(x<y<z)$, if at least one vertex of G has degree x, at least one degree y and at least one degree z, and if no vertex of G has degree different from x or y or z. The set of all n-vertex triregular graphs of degrees x, y, and z will be denoted by $\Theta_{n}(x, y, z)$.

Within the theory of graph energy, in view of its chemical applications [5, 8] a connected graph in which there are no vertices of degree greater than 3 is referred to as a molecular graph. Such graphs represent the carbon-atom skeleton of conjugated organic molecules, and play a special role in the Hückel molecular-orbital theory.

3. THE MAIN RESULTS

Theorem 3.1. Let $G \in \Gamma_{n}(a, b)$ and let the number of quadrangles (q) of G be less than or equal to abn/4. Then the inequality (1) holds if $5 \leq a<b \leq$ $(a-1)^{2} / 2$.

Proof. We start with the bound (4). If $q \leq a b n / 4$, then $-2 a b n+8 q \leq 0$. Combining this with (4) we obtain

$$
E(G) \geq 2 m \sqrt{\frac{1}{(2 a+2 b-1)}}
$$

i. e.,

$$
\frac{E(G)}{n} \geq d \sqrt{\frac{1}{(2 a+2 b-1)}}>a \sqrt{\frac{1}{(2 a+2 b-1)}}
$$

where $d=2 m / n$ is the average vertex degree of the graph G. But

$$
\frac{a}{\sqrt{(2 a+2 b-1)}} \geq 1
$$

if and only if $(a-1)^{2} / 2 \geq b$. Hence $E(G) / n>1$ if $5 \leq a<b \leq(a-1)^{2} / 2$.
Corollary 3.2. Let $G \in \Gamma_{n}(a, b)$ quadrangle-free. Then (1) holds if $5 \leq a<$ $b \leq(a-1)^{2} / 2$.

Consider now triregular graphs. If $G \in \Theta_{n}(1, a, b)$ and if G has m edges, then

$$
\begin{equation*}
k+n_{a}+n_{b}=n \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
1 \cdot k+a n_{a}+b n_{b}=2 m \tag{6}
\end{equation*}
$$

where k is the number of vertices of degree 1 , whereas n_{a} and n_{b} are the number of vertices of degree a and b, respectively. From Eqs. (5) and (6) we get

$$
n_{a}=\frac{b(n-k)-(2 m-k)}{b-a} \quad, \quad n_{b}=\frac{(2 m-k)-a(n-k)}{b-a} .
$$

If d_{i} is the degree of the i-th vertex, then

$$
\begin{aligned}
\sum_{i=1}^{n} d_{i}^{2} & =1^{2} k+a^{2} n_{a}+b^{2} n_{b} \\
& =k+a^{2}\left[\frac{b(n-k)-(2 m-k)}{b-a}\right]+b^{2}\left[\frac{(2 m-k)-a(n-k)}{b-a}\right] \\
& =k+(2 m-k)(b+a)-(n-k) a b
\end{aligned}
$$

Using Eq. (7), and bearing in mind (2), we obtain

$$
\begin{aligned}
M_{4} & =2 k+2(2 m-k)(b+a)-2(n-k) a b-2 m+8 q \\
& =(2 b+2 a-1)(2 m-k)-2 a b(n-k)+k+8 q
\end{aligned}
$$

Thus the inequality (3) can be rewritten as

$$
\begin{equation*}
E(G) \geq 2 m \sqrt{\frac{2 m}{(2 b+2 a-1)(2 m-k)-2 a b(n-k)+k+8 q}} \tag{8}
\end{equation*}
$$

If $G \in \Theta_{n}(1,2,3)$ is a quadrangle-free molecular graph, then $q=0, a=2$, and $b=3$. From (8) we then have

$$
E(G) \geq 2 m \sqrt{\frac{2 m}{9(2 m-k)-12(n-k)+k}}
$$

i. e.,

$$
\frac{E(G)}{n} \geq \frac{2 m}{n} \sqrt{\frac{m}{9 m-6 n+2 k}}
$$

But

$$
\frac{2 m}{n} \sqrt{\frac{m}{9 m-6 n+2 k}} \geq 1
$$

if and only if $6 n^{3}-(9 m+2 k) n^{2}+4 m^{3} \geq 0$. Thus we have the following:
Theorem 3.3. Let G be quadrangle-free molecular graph with n vertices, m edges and k pendent vertices. If $6 n^{3}-(9 m+2 k) n^{2}+4 m^{3} \geq 0$, then the relation (1) is satisfied.

Corollary 3.4. Let G be quadrangle-free molecular graph with n vertices and m edges. If $4\left(n^{3}+m^{3}\right) \geq 9 m n^{2}$, then the relation (1) is satisfied.

Proof. We have $k \leq n$ where k is the number of pendent vertices. If

$$
9 m n^{2} \leq 4\left(n^{3}+m^{3}\right)
$$

then

$$
\begin{aligned}
0 & \leq 4 n^{3}-9 m n^{2}+4 m^{3}=6 n^{3}-(9 m+2 n) n^{2}+4 m^{3} \\
& \leq 6 n^{3}-(9 m+2 k) n^{2}+4 m^{3}
\end{aligned}
$$

Corollary 2 follows now from the Theorem 2.
In connection with Theorem 2 and its Corollary 2.1 one should note that the case $m=n-1$, i. e., the case when the molecular graph G is a tree was studied in $[7,9,11]$. It was shown there that all acyclic molecular graphs, with exactly six exceptions satisfy the relation (1). All acyclic molecular graphs with $n \geq 8$ vertices satisfy the relation (1).

Theorem 3.5. Let the graph $G \in \Theta_{n}(1, a, b)$ be quadrangle-free and let it has not more than $12 n / 13$ pendent vertices. If $5 \leq a<b \leq(a-1)^{2} / 2$ and if the average vertex degree of G exceeds a, then the relation (1) is satisfied.

Proof. Since G is quadrangle-free, from (8), we have

$$
\begin{align*}
\frac{E(G)}{n} & \geq \frac{2 m}{n} \sqrt{\frac{2 m}{(2 b+2 a-1)(2 m-k)-2 a b(n-k)+k}} \\
& \geq \frac{2 m}{n} \sqrt{\frac{2 m-k}{(2 b+2 a-1)(2 m-k)-2 a b(n-k)+k}} \tag{9}
\end{align*}
$$

Note that $k \leq 12 n / 13$ implies $k \leq 12(n-k) \leq 2 a b(n-k)$, i. e., $-2 a b(n-k)+$ $k \leq 0$.

Using this in the inequality (9), we obtain

$$
\frac{E(G)}{n} \geq d \sqrt{\frac{1}{(2 b+2 a-1)}}>\frac{a}{\sqrt{2 b+2 a-1}}
$$

where, as before, $d=2 m / n$ and, as required in the statement of Theorem 3 , $d>a$. Now,

$$
\frac{a}{\sqrt{2 b+2 a-1}} \geq 1
$$

holds if and only if $(a-1)^{2} / 2 \geq b$. Thus $E(G)>n$.

References

[1] D. Cvetković, M. Doob and H. Sachs, Spectra of Graphs - Theory and Application, Academic Press, New York, 1980.
[2] J. A. de la Peña, L. Mendoza and J. Rada, Comparing momenta and π-electron energy of benzenoid molecules, Discr. Math., 302 (2005), 77-84.
[3] I. Gutman, Bounds for total π-electron energy, Chem. Phys. Lett., 24 (1974), 283-285.
[4] I. Gutman, The energy of a graph: Old and new results, in: A. Betten, A. Kohnert, R. Laue, A. Wassermann (Eds.), Algebraic Combinatorics and Applications, SpringerVerlag, Berlin, (2001), 196-211.
[5] I. Gutman, Topology and stability of conjugated hydrocarbons. The dependence of total π-electron energy on molecular topology, J. Serb. Chem. Soc., 70 (2005), 441-456.
[6] I. Gutman, On graphs whose energy exceeds the number of vertices, Lin. Algebra Appl., in press.
[7] I. Gutman, X. Li, Y. Shi and J. Zhang, Hypoenergetic trees, MATCH Commun. Math. Comput. Chem., 60 (2008), in press.
[8] I. Gutman and O. E. Polansky, Mathematical Concepts in Organic Chemistry, SpringerVerlag, Berlin, 1986.
[9] I. Gutman and S. Radenković, Hypoenergetic molecular graphs, Indian J. Chem., 46A (2007), 1733-1736.
[10] I. Gutman, S. Zare Firoozabadi, J. A. de la Peña and J. Rada, On the energy of regular graphs, MATCH Commun. Math. Comput. Chem., 57 (2007), 435-442.
[11] V. Nikiforov, The energy of C_{4}-free graphs of bounded degree, Lin. Algebra Appl., in press.
[12] J. Rada and A. Tineo, Upper and lower bounds for the energy of bipartite graphs, J. Math. Anal. Appl., 289 (2004), 446-455.
[13] B. Zhou, Lower bounds for energy of quadrangle-free graphs, MATCH Commun. Math. Comput. Chem., 55 (2006), 91-94.
[14] B. Zhou, I. Gutman, J. A. de la Peña, J. Rada and L. Mendoza, On spectral moments and energy of graphs, MATCH Commun. Math. Comput. Chem., 57 (2007), 183-191.

[^0]: ${ }^{1}$ Corresponding author.

 Received 10 March 2008; Accepted 20 April 2008
 (c)2007 Academic Center for Education, Culture and Research TMU

