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Abstract. The energy E(G) of a graph G is equal to the sum of the

absolute values of the eigenvalues of G . Several classes of graphs are

known that satisfy the condition E(G) > n , where n is the number of

vertices. We now show that the same property holds for (i) biregular

graphs of degree a, b , with q quadrangles, if q ≤ abn/4 and 5 ≤ a < b ≤
(a − 1)2/2 ; (ii) molecular graphs with m edges and k pendent vertices,

if 6n3 − (9m+ 2k)n2 + 4m3 ≥ 0 ; (iii) triregular graphs of degree 1, a, b

that are quadrangle–free, whose average vertex degree exceeds a , that

have not more than 12n/13 pendent vertices, if 5 ≤ a < b ≤ (a− 1)2/2 .
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1. INTRODUCTION

In this paper we are concerned with a graph invariant defined in terms of
graph eigenvalues. Let G be a simple graph and let its vertex set be V (G) =
{v1, v2, . . . , vn} . The adjacency matrix A(G) of the graph G is a square matrix
of order n whose (i, j)-entry is equal to unity if the vertices vi and vj are
adjacent, and is equal to zero otherwise. The eigenvalues λ1, λ2, . . . , λn of
A(G) are said to be the eigenvalues of the graph G , and are studied within the
Spectral Graph Theory [1]. The energy of the graph G is defined as

E = E(G) =
n∑

i=1

|λi| .

The graph energy is an invariant much studied in the mathematical and
mathema-tico–chemical literature; for details see the book [8], the reviews [4, 5],
and elsewhere [2, 6, 7, 9, 10, 11, 12, 13, 14]. For the chemical application of E
see [5] and the references cited therein.

Recently some classes of graphs satisfying the inequality

(1) E(G) > n

have been characterized [6, 10]. Among graphs these are

• non-singular graphs, i. e., those for which detA(G) 6= 0 [3];
• regular graphs of degree greater than zero [10];
• hexagonal systems (benzenoid graphs) [6];
• acyclic molecular graphs, with exactly six exceptions [7, 9, 11].

In this paper we point out a few other classes of graphs with the same
property. In order to do this we first need some preparations.

2. DEFINITIONS AND PREVIOUS RESULTS

Let, as before, λ1, λ2, . . . , λn be the eigenvalues of the graph G . The p-th
spectral moment of G is defined as

Mp =
n∑

i=1

(λi)p .

Recall that

(2) M2 = 2m and M4 = 2
n∑

i=1

d2
i − 2m+ 8q

where m and q are, respectively, the number of edges and quadrangles in G .
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The following lower bound for the energy is known [12]:

(3) E(G) ≥

√
M3

2

M4
.

For generalizations of (3) see [2, 13, 14]
Recall that a graph is said to be regular of degree x if all its vertices have

the same degree x .
A graph G is said to be biregular of degrees x and y , (x < y), if at least

one vertex of G has degree x and at least one vertex has degree y , and if no
vertex of G has degree different from x or y . The set of all n-vertex biregular
graphs of degrees x and y will be denoted by Γn(x, y) .

For G ∈ Γn(a, b) , the following special case of the inequality (3) has been
recently deduced [6]:

(4) E(G) ≥ 2m

√
2m

(2a+ 2b− 1)2m− 2abn+ 8q
.

A graph G is said to be triregular of degrees x , y , and z , (x < y < z), if
at least one vertex of G has degree x , at least one degree y and at least one
degree z , and if no vertex of G has degree different from x or y or z . The
set of all n-vertex triregular graphs of degrees x , y , and z will be denoted by
Θn(x, y, z) .

Within the theory of graph energy, in view of its chemical applications [5, 8]
a connected graph in which there are no vertices of degree greater than 3
is referred to as a molecular graph. Such graphs represent the carbon–atom
skeleton of conjugated organic molecules, and play a special role in the Hückel
molecular–orbital theory.

3. THE MAIN RESULTS

Theorem 3.1. Let G ∈ Γn(a, b) and let the number of quadrangles (q) of G
be less than or equal to abn/4 . Then the inequality (1) holds if 5 ≤ a < b ≤
(a− 1)2/2 .

Proof. We start with the bound (4). If q ≤ abn/4 , then −2abn + 8q ≤ 0 .
Combining this with (4) we obtain

E(G) ≥ 2m

√
1

(2a+ 2b− 1)

i. e.,

E(G)
n
≥ d

√
1

(2a+ 2b− 1)
> a

√
1

(2a+ 2b− 1)
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where d = 2m/n is the average vertex degree of the graph G . But
a√

(2a+ 2b− 1)
≥ 1

if and only if (a− 1)2/2 ≥ b . Hence E(G)/n > 1 if 5 ≤ a < b ≤ (a− 1)2/2 . �

Corollary 3.2. Let G ∈ Γn(a, b) quadrangle–free. Then (1) holds if 5 ≤ a <

b ≤ (a− 1)2/2 .

Consider now triregular graphs. If G ∈ Θn(1, a, b) and if G has m edges,
then

(5) k + na + nb = n

and

(6) 1 · k + ana + b nb = 2m

where k is the number of vertices of degree 1, whereas na and nb are the number
of vertices of degree a and b , respectively. From Eqs. (5) and (6) we get

na =
b(n− k)− (2m− k)

b− a
, nb =

(2m− k)− a(n− k)
b− a

.

If di is the degree of the i-th vertex, then
n∑

i=1

d2
i = 12 k + a2 na + b2 nb

= k + a2

[
b(n− k)− (2m− k)

b− a

]
+ b2

[
(2m− k)− a(n− k)

b− a

]
= k + (2m− k)(b+ a)− (n− k)ab .(7)

Using Eq. (7), and bearing in mind (2), we obtain

M4 = 2k + 2(2m− k)(b+ a)− 2(n− k)ab− 2m+ 8q

= (2b+ 2a− 1)(2m− k)− 2ab(n− k) + k + 8q .

Thus the inequality (3) can be rewritten as

(8) E(G) ≥ 2m

√
2m

(2b+ 2a− 1)(2m− k)− 2ab(n− k) + k + 8q
.

If G ∈ Θn(1, 2, 3) is a quadrangle–free molecular graph, then q = 0 , a = 2 ,
and b = 3 . From (8) we then have

E(G) ≥ 2m

√
2m

9(2m− k)− 12(n− k) + k
.
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i. e.,
E(G)
n
≥ 2m

n

√
m

9m− 6n+ 2k
.

But
2m
n

√
m

9m− 6n+ 2k
≥ 1

if and only if 6n3 − (9m+ 2k)n2 + 4m3 ≥ 0 . Thus we have the following:

Theorem 3.3. Let G be quadrangle–free molecular graph with n vertices, m
edges and k pendent vertices. If 6n3−(9m+2k)n2+4m3 ≥ 0 , then the relation
(1) is satisfied. �

Corollary 3.4. Let G be quadrangle–free molecular graph with n vertices and
m edges. If 4(n3 +m3) ≥ 9mn2 , then the relation (1) is satisfied.

Proof. We have k ≤ n where k is the number of pendent vertices. If

9mn2 ≤ 4(n3 +m3)

then

0 ≤ 4n3 − 9mn2 + 4m3 = 6n3 − (9m+ 2n)n2 + 4m3

≤ 6n3 − (9m+ 2k)n2 + 4m3 .

Corollary 2 follows now from the Theorem 2. �

In connection with Theorem 2 and its Corollary 2.1 one should note that the
case m = n−1 , i. e., the case when the molecular graph G is a tree was studied
in [7, 9, 11]. It was shown there that all acyclic molecular graphs, with exactly
six exceptions satisfy the relation (1). All acyclic molecular graphs with n ≥ 8
vertices satisfy the relation (1).

Theorem 3.5. Let the graph G ∈ Θn(1, a, b) be quadrangle–free and let it has
not more than 12n/13 pendent vertices. If 5 ≤ a < b ≤ (a − 1)2/2 and if the
average vertex degree of G exceeds a , then the relation (1) is satisfied.

Proof. Since G is quadrangle–free, from (8), we have

E(G)
n

≥ 2m
n

√
2m

(2b+ 2a− 1)(2m− k)− 2ab(n− k) + k

≥ 2m
n

√
2m− k

(2b+ 2a− 1)(2m− k)− 2ab(n− k) + k
.(9)
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Note that k ≤ 12n/13 implies k ≤ 12(n− k) ≤ 2ab(n− k) , i. e., −2ab(n− k) +
k ≤ 0 .

Using this in the inequality (9), we obtain

E(G)
n
≥ d

√
1

(2b+ 2a− 1)
>

a√
2b+ 2a− 1

where, as before, d = 2m/n and, as required in the statement of Theorem 3,
d > a . Now,

a√
2b+ 2a− 1

≥ 1

holds if and only if (a− 1)2/2 ≥ b . Thus E(G) > n . �

References
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